Роль пигментного эпителия в жизнедеятельности сетчатки

Автор: Вит Валерий Викторович – д-р мед. наук, профессор, заведующий лабораторией патоморфологии и иммунологии, зам. директора по науке Института глазных болезней и тканевой терапии им. В.П. Филатова
Другие публикации этого автора
01.09.2012 12:12

Монография. 2003 г.
Печатается с разрешения аврора.

Copyright © visualparadox.com

Copyright © visualparadox.com

Пигментный эпителий сетчатой оболочки выполняет многообразные функции. Первоначально предполагали, что пигментный эпителий является просто черным фоном снижающим рассеивание света в процессе фоторецепции. В конце 19 века, установили, что отделение сенсорной части сетчатки от пигментного эпителия приводит к потере зрения. Это исследование позволило предположить важную роль пигментного эпителия в фоторецепции. Многочисленные исследования последнего времени установили наличие взаимодействия клеток пигментного эпителия с фоторецепторами. Использование электронной микроскопии выявило наличие фагоцитарной активности эпителиоцитов.

Определенную роль в установлении функции пигментных клеток сыграло применение культуры тканей.

Мы перечислим лишь некоторые из функций пигментного эпителия сетчатки.

Функции пигментного эпителия сетчатой оболочки.

А) Физические:

1. Выполняет барьерные функции по отношению сенсорной части сетчатки, не допуская крупные молекулы со стороны хориоидеи.

2. Обеспечивает адгезию сенсорной части сетчатки с пигментным эпителием посредством транспорта специфических жидких компонентов и взаимодействия микроворсинок клеток пигментного эпителия с наружными члениками фоторецепторов и синтеза компонентов межфоторецепторного матрикса.

Б) Оптические:

1. Абсорбция световой энергии (гранулы меланина), «обрезая» рассеянный свет, повышает при этом разрешающую способность зрительной системы.

2. Является барьером на пути проникновения световой энергии через склеру, повышая разрешающую способность зрительной системы.

3. Максимально поглощает энергию лазерных излучателей (аргоновый, рубиновый, криптоновый лазеры) благодаря абсорбционной способности меланосом, приводя к фототермическому эффекту. Последнее свойство является основой фотокоагуляции.

В) Метаболические:

1. Фагоцитирует наружные членики палочек и колбочек.

2. Переваривает структурные элементы фагоцитированных наружных члеников палочек и колбочек (гетерофагия) благодаря наличию хорошо развитой лизосомной системы.

3. Эстерификация, изомеризация, хранение и транспорт витамина А.

4. Синтез межклеточного матрикса: базального компонента базальной мембраны.

5. Содержит ферменты для синтеза зрительного хроматофора 11-цис-ретинала; гранул меланина (тирозиназы); ферментов детоксикации(цитохром Р450); и др.

6. Транспорт большого количества метаболитов к зрительным клеткам и от них в направлении сосудистой оболочки.

Г) Транспортные:

1. Активный транспорт ионов НСО 3, определяющих выведение жидкости из субретинального пространства.

2. Na/K+ - насос, обеспечивающий перенос солей через клетки пигментного эпителия. Перенос воды осуществляется пассивно.

3. Активный АТФ-зависимый перенос ионов Mg2+-Ca2+.

4. Насосная система, обеспечивающая отток большого объема воды из стекловидного тела.

Пигментный эпителий способствует формированию фоторецепторов в эмбриогенезе, индуцируя этот процесс, обеспечивает функционирование гемато-ретинального барьера, поддерживает постоянство среды между пигментным эпителием и фоторецепторами, поддерживает структуру контакта между наружными сегментами палочек и колбочек и клетками пигментного эпителия, обеспечивает активный избирательный транспорт метаболитов между сетчаткой и увеальным трактом, осуществляет транспорт, накопление и изомеризацию витамина А, осуществляет фагоцитоз наружных сегментов фоторецепторов, а также поглощение световой энергии гранулами меланина, осуществляет синтез гликозаминогликанов, окружающих наружные сегменты фоторецепторов.

Клетки пигментного эпителия фагоцитируют до 10% наружных члеников фоторецепторов ежедневно. Способность фагоцитировать наружные сегменты палочек и колбочек является прямым доказательством постоянной регенерации последних.

Поглощение световой энергии меланиновыми гранулами обеспечивает четкую топографическую регистрацию световой энергии наружными сегментами фоторецепторных клеток, окутанных отростками клеток пигментного эпителия, содержащими зерна меланина. Это обеспечивает световую изоляцию каждого фоторецептора. При усилении освещенности глазного яблока зерна меланина мигрируют в отростки клеток пигментного эпителия. При этом степень изоляции фоторецепторов усиливается.

Поглощение и транспортировка ретинола (витамин А) обеспечивается рецепторами, расположенными на базальной и латеральной поверхностях клеток пигментного эпителия. Клетки пигментного эпителия синтезируют особый гликопротеид, который переносит ретинол в интерфоторецепторный матрикс, откуда он и поступает в фоторецепторы.

Нарушение функции пигментного эпителия лежит в основе развития ряда заболеваний. Его структурные изменения выявлены при возрастной макулопатии, центральной серозной ретинопатии, дистрофии сетчатки. Эти изменения хорошо выявляются офтальмоскопически.

Клетки пигментного эпителия чувствительны к ряду токсинов.

Пигментный эпителий сетчатки расположен между хориокапиллярным слоем сосудистой оболочки и сенсорной частью сетчатки. Он представляет собой один слой уплощенных интенсивно пигментированных клеток, плотно прилежащих друг к другу и имеющих гексагональную форму. Размеры клеток широко варьируют в зависимости от их расположения. В фовеолярной области они выше (высота 14-16 мкм) и уже (10-14 мкм), чем в области зубчатой линии.

Как и в любых эпителиальных клетках организма человека в клетках пигментного эпителия сетчатой оболочки различают апикальную и базальную части. С базальной стороны к ним прилежит базальная мембрана.

Определяемая при световой микроскопии ткань, лежащая между пигментным эпителием и хориoкапиллярным слоем сосудистой оболочки гомогенного строения, была названа Брухом стекловидной пластинкой (lamina vitrea), в последующем она получила название мембрана Бруха (compexus (lamina) basalis (Bruch)).

Нередко в области мембраны Бруха и клеток эпителия при офтальмоскопии можно обнаружить друзы, развивающиеся в результате процессов старения или различных заболеваний. Различают твердые и мягкие друзы. Они могут то появляться, то регрессировать. Твердые друзы чаще встречаются у молодых людей и являются продуктом синтетической деятельности клеток пигментного эпителия. Мягкие друзы, содержащие в своем составе мембранные структуры, отражают общие нарушения функции клеток.

Мембрана Бруха выполняет разнообразные и важные функции, в первую очередь по избирательному транспорту питательных веществ и воды в направлении сетчатки. Именно мембрана Бруха вместе с хориокапиллярным слоем сосудистой оболочки и клетками пигментного эпителия образует своеобразную структурно-функциональную единицу, обеспечивающую барьерные функции. Нарушение строения мембраны является причиной различных дегенеративных заболеваний пигментного эпителия (отслойка эпителия) и сенсорной части сетчатки (тапеторетинальная дегенерация, дегенерация макулярной области и др.). Способствуют этому ее возрастные изменения и формирование друз.

Продолжая описание клеток пигментного эпителия, необходимо указать на то, что они, как и другие эпителиальные клетки, в базальной своей части образуют многочисленные складки. На апикальной поверхности клеток определяется множество микроворсинок, простирающихся в пространстве между наружными сегментами фоторецепторов и окутывающих их.

Между цитоплазматической мембраной микроворсинок эпителиоцитов и мембраной фоторецепторов никаких специализированных соединений нет и обнаруживается щелевидное пространство. Выполнено это пространство «цементирующей субстанцией» сложного химического состава. Называют его «интерфоторецепторный матрикс». Синтезируется он клетками пигментного эпителия.

Первоначально предполагали, что матрикс представляет собой гомогенное скопление протеогликанов. В настоящее время выявлено довольно сложное пространственное взаимодействие протеогликанов матрикса с наружными сегментами колбочек. Именно это взаимодействие и обеспечивает достаточно плотный контакт между пигментным эпителием и сетчаткой. Интерфоторецепторный матрикс участвует в метаболизме сетчатки, а именно в переносе ретиноида. Содействует он также фагоцитозу наружных фоторецепторов.

Нарушение структурной организации матрикса является не маловажной причиной возникновения отслойки сетчатки, а также сопровождает различные виды ее дегенерации.

Клетки пигментного эпителия плотно соединены между собой при помощи зон замыкания, опоясывающей десмосомы и щелевых контактов. Органоиды опоясывают клетки с апикальной стороны, плотно скрепляя их. В средней части клеток располагаются десмосомы. Подобный контакт делает невозможным прохождение метаболитов, особенно высокомолекулярных веществ, вдоль межклеточного пространства. Этот перенос происходит только через цитоплазму клетки активным путем. Именно подобный плотный межклеточный контакт обеспечивает возможность функционирования гемато-ретинального барьера.

В разных участках пигментного эпителиоцита цитоплазма имеет отличающееся ультраструктурное строение. Именно по этой причине цитоплазму клетки условно разделяют на 3 зоны.

Поскольку фагоцитарная активность клеток пигментного эпителия является одной из основных функций, их цитоплазма содержит фаголизосомы.

Процесс фагоцитоза и лизиса сегментов наружных члеников фоторецепторов происходит довольно быстро. Одна клетка пигментного эпителия кролика в сутки подвергает лизису 2000 дисков в парафовеолярной области сетчатки, 3500 дисков в перифовеолярной области и почти 4000 по периферии сетчатки. Отмечено, что при интенсивном освещении количество фагосом увеличивается. Клетки пигментного эпителия отщепляют наружные членики колбочек таким же образом, как и палочек, но более интенсивно после прекращения освещения. Процесс разрушения наружных члеников колбочек и палочек фоторецепторов и их утилизации является адаптивным механизмом, способствующим поддержанию структурной и функциональной целостности фоторецепторного аппарата.

Нередким структурным включением цитоплазмы клетки пигментного эпителия сетчатки является липофусцин.

Липофусцин содержится во многих тканях организма и его количество нарастает с возрастом. Именно по этой причине этот пигмент был назван «пигментом старения». Возникает он в результате накопления в лизосомах стареющих клеток нелизирующихся агрегатов белка и липидов. Этот пигмент отличается характерными физико-химическими свойствами, включая естественную желтовато-зеленую флюоресценцию. Накопление липофусцина происходит не только в процессе старения, но и при ряде метаболических заболеваний. Причины и механизмы возникновения липофусциноза оставались загадкой более 100 лет. В настоящее время известно, что липофусцин возникает в результате перекисного окисления клеточных компонентов, особенно липидов.

В глазном яблоке, липофусцин обнаруживается в пигментном эпителии сетчатки. Максимальное его накопление происходит в клетках, расположенных в заднем полюсе. К 80 годам липофусциновые гранулы занимают до 19 % объема эпителиоцитов. Липофусцин в клетках пигментного эпителия сетчатки возникает в результате фагоцитоза наружных сегментов фоторецепторов с последующим перекисным окислением липидной фракции этих фрагментов. В этом процессе участвует коротковолновой спектр световой энергии.

Многочисленные экспериментальные биохимические и физико-химические исследования указывается на большую роль в формировании липофусцина в эпителиальных клетках сетчатки витамина А и его производных. Число зерен липофусцина прогрессивно увеличивается с возрастом. Наоборот, количество меланосом с возрастом уменьшается. Полагают, что уменьшение количества меланосом связано с деятельностью лизосомного аппарата клеток и возрастным изменением меланина.

Меланин клеток пигментного эпителия поглощает световую энергию достаточно широкого спектра, защищая фоторецепторы и цитоплазму пигментных эпителиоцитов от повреждающего действия света. Меланин обладает свойством свободного радикала и функционирует так же, как полимер, участвующий в обмене электронов. Меланин связывает ряд металлов и лекарственных веществ.

Пигментный эпителий является жизненно важным элементом сетчатки, обеспечивающим обменные и в большой степени световоспринимающую функции сетчатки.

Коментарии

Загрузка...

 
 
Офтальмологические события
 
Facebook